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We study some convergence (in LP) and spectral properties of the positive spline
operators Un.d(x) = Li (J6 Mi.k(t)f(t) dt) N,.dx), where Li Ni.k = 1 and HMi,k = I,
N i•k and M i•k being the B-splines of degree k and class Ck

- 1 associated with some
partition of 1= [0, I] into n subintervals. Their eigenfunctions are orthogonal
splines generalizing in some sense the Legendre polynomials with which they share
many properties. .1.) 1988 Academic Press. Inc.

I. INTRODUCTION

Let An= {O=XO<x I < ... <Xn= I} be an arbitrary partition of
sequence A n,k of knots by setting

... =Xn+k= 1 (n, k~ 1). The nodes of L1 n.k

1= [0, 1] extended to a
x_ k = ... =x- 1 =Xo and Xn=
are the points

(i,k=(Xi+1 + ... +Xi+k)/k ( - k ,,;;;, i ,,;;;, n - 1).

The normalized B-splines of degree k are defined by

where the B-spline M i k(X) is the (k + 1}th divided difference of the function
(k + 1)(·- x): with r~spect to Xi' ... , Xi+k+I'

It is well known that these B-splines verify

supp(Ni,d = [Xi' Xi+k+ IJ,
n- I

I Ni,Ax) = 1,
i= -k

n-l

L (i,kNi,k(X) = x,
i= -k

and ( Mi.k(X) dx = 1.
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Schoenberg [26] constructed a generalization of classical Bernstein
operators by setting, for f E C(I),

11 -- 1

S",kf(x) = L /(~i,k) Ni,k(X),
i= -k

(1)

Their properties have been studied in [17],
More recently, Muller [18] defined a second family of spline

operators, generalizing the Bernstein-Kantorovitch operators [14], by
setting, for f E U(I),

Here, we want to study a third family of posItive spline operators,
generalizing the modified Bernstein operators of Durrmeyer [11] and
Derriennic [8,9] which are defined, for f E LP(I), by

(3 )

where bi,k(X) = mxi(l- X)k i for °~ i ~ k,
A remarkable property of these operators is that their eigenfunctions are

the Legendre polynomials on [0, 1], This property is true, more generally,
for similar operators associated with the Jacobi and Laguerre polynomials
[4, 22], It seemed rather natural to extend this property to the following
spline operators

11-1

U",k/(X) = L <Mi,k' f) Nik(X),
i~- k

(4)

where <f, g) = Jb f(t) g(t) dt.
We give some convergence results when IA"I =maX;(.'it 1 -xJ tends to

zero as n-+ +00 andfELP(I) (l ~p~ +(0),
Then we prove that the eigenfunctions of (4) form a basis of orthogonal

splines on [0, 1], generalizing the Legendre polynomials, and different
from those given by Schoenberg [26], More precise results are given about
piecewise linear and quadratic orthogonal splines.

We use the notation Sp(k, A II) for the space of splines of degree k, class
Ck- 1

, on the partition A,,: its dimension is n+k and a basis is {Nik(X),
-k~i~n-1},
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II. CONVERGENCE PROPERTIES IN LP(l)

U/1,k is a positive, selradjoint operator of norm unity in

When f is integrable, S!l U/1k f( t) dt = SA f( t) dt.

U/1d(x) = HKn.k(x, t)f(t) dt, whereProof

THEOREM I. (i)
!f'(LP(I)).

(ii) For every k~l, U/1kfconverges tofEL"(l) when n-> +x and
1,1/11-> O.

(iii)

f1 -- I

K/1,k(X, t) = I Mi'k(t) Ni,k(X)
1~ k

= K/1,dt, x) ~ o.

The kernel being positive and symmetric, Un.k is a positive and self-adjoint
operator. ForfELP(J) and I/p+ I/q= I, we get by Holder's inequality

[f l JUq[fl JliP
IUnkf(x)1 ~ 0 Kn,k(X, t) dt 0 K/1,k(X, t) If(tW dt .

Since

f K/1,k(X, t) dt = I (f Mi,k(t) dt) Ni,k(X)
o i 0

= I Ni.k(X) = I = CK/1,k(X, t) dx.
i -0

Hence

fl IUn,kf(x)1 Pdx ~ fl fl K/1.k(X, t) If(tW dt dx
000

= fal (f K/1,d x ,t)dX) If(tWdt

= fl If(t)1 Pdt.
o

This proves IIU/1kfllp~ Ilfllp' But when f=e o (eo(x) = I for all x),
UnkeO = eo, thus in fact we have an equality and the norm of U/1k is I in the
space !f'(L"(l)) of linear continuous operators on LP(l), For the con-
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vergence in LP(l), we use a Korovkin-type theorem [1, lOJ which asserts
that for positive linear contractions, it is sufficient to prove it for the two
test functions eo(x) = 1, e](x) = x. But we have

and

I (k + 1 ) I<Mi,k> e 1 ) =f xMi,k(X) dx =L: x i+ j I(k + 2) (see, e.g., Neuman [16J).
o ;-0

This gives

Since IX i- ¢i.kl :::; (Ilk) 2:7- 1 IX i - Xi + il :::; ~(k + 1) ILl "I, we get at once; for
all k? 1,

In particular II U".kel - e11l p -> 0 when ILl "I -> O.

Finally

= <.1>0) =rf(t) dt. I
o

Q.E.D.

Let LP,l(l) be the space of functions f E LP(l) with l' E LP(I) and the

norm Il.fllp,1 = Ilfll p + 1I1'll p •

LEMMA 1. For each X E I,

"f Ni,k(X)' [+hl Mi,k(t) It - xl dt:::; (k + 1) ILl,,1
i= -k .'1: 1

holds.

Proof Let Ai.dx) = J~:+k+ I Mi,dt) It - xl dt and let us fix x E [Xi' x j + I J,
0:::; j:::; n - 1. The only nonzero B-splines at x have indices i = -k + j, ... , j,
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hence tE[X~k+j,Xk+j+l]' It-xl~(k+l)ILlnl and, using the properties
of B-splines

11-1

and L Ai,k(x)N;,k(x)~(k+l)ILI,J I
i~ -k

LEMMA 2, For !ELP,l(/), 1~p~ +00,

holds.

Proof For x fixed in I, we have

IUn.k!(x) - !(x)1 ~ ;~~lk Ni.k(X) ('+k+l Mi.k(t) (L 1f'(u)1 dU) dt

Let Ai.k(X) = J~;+k+l Mi.At)lt-xl dt and

Bi.k(X) = (,+k+ 1 Mi.k(t) (L 1f'(u)1 PdU) dt.

Holder's inequality (lIp + llq = 1) gives successively

L1f'(u)1 du ~ It - xI1jq (L 1f'(u)IP duYiP,

r+k

+
1

Mi.At) (L 1f'(u)1 dU) dt ~ A,l.~q(X) B},t(x),

IUn.k!(x) - !(x)1 ~ [~Ai.k(X) Ni,k(X)Jiq [~ B;,dx) Ni,JX)JiP.

Lemma 1 gives

ForXE[xi,Xi+k+l] and by Holder's inequality

f Bi.k(X) Ni.k(X) dx ~ [+k+ 1 Ni.k(x) ([+k+ 1 M;,k(t)

x ([+k+ 1 If'(u)j PdU) dt) dx

= [+k+ 1 Ni,Ax) ((U" 1 1f'(u)1 PdU) dx

~ ILlnl f+ktl 1f'(u)PI du,
<,

(5)

(6)

(7)
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since

f
Xi + k + 1 Xi+k+ 1 - Xi
. Ni,k(x)dx= k 1 ~ILI,J
~ +

Now, from (5), (6), and (7) we deduce

33

Q.E.D.

For f E U(I) and 0 ~ t ~ 1, the K-functional of Peetre [20] is defined by

(8)

and the integral modulus of continuity by

w1,p(f,h)= sup Ilf(·+t)-f(·)llp(I,),
O<,~h

where II ·11 (I,) means that the norm is to be taken over the interval
I, = [0,1- t]. Johnen [13] proved that there exist constants C1 > 0 and
C2 > 0, independent of f and p, such that:

(0 ~ t ~ 1) (9)

THEOREM 2. There exists a constant M k > 0 (independent of f and
1~ P ~ +C()) such thatJor all f E L P(I),

IIUn,kf - fllp~Mkwl,p(f, ILlnl)·

Proof From Theorem l(i), we have II Un,d - flip ~ 211fll p for all
f E LP(I) and from Lemma 2, we have

thus

II Un,kf - flip ~ II Un,k(f - g) - (f - g)llp+ II Un,k g- gllp

~211f -gllp+(k+ 1) Ilg'llplLlnl

~ 2( Ilf - gllp + k ILlnl II g'llp)'
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Taking the infimum over all gELP"(I) and usmg (8) and (9) with
t = k IAnl ~ 1, we get M k = 2kC2 ,

III. SPECTRAL PROPERTIES IN L 2(1)

THEOREM 3, (i) Un,k is a self-adjoint operator in L 2(1) having n + k real
positive simple eigenvalues ).j (0 ~ j ~ n + k - 1),

0< }.n + k __ , < , .. < ).j < ." < Al < ).0 = 1.

(ii) The associated eigenfunctions VJx) are defined by
Vi(x)=L7~!_kW'iNi,k(X)where Vi=(wlj' -k~i~n-l) is thejth eigen­
vector of the oscillatory matrix A n,k = (<M',k' Ni,k)' - k ~ i, j ~ n ~ 1),
Moreover, VoCx) = 1 and S- (V) ~ j for 1~ j ~ n + k - 1 (number ol
changes of sign on I).

(iii) The best least square approximation S 0l.fEL2(1) in Sp(k, An) is

n+k-l

S(x) = L Yi(f, Vi) Vi(x)
i~ 0

where

and

n-I

(f, Vi )= L WI/Pucn,
i= --k

where

Proof Un,k is an operator of finite rank n + k and its restnctlOn to
Sp(k, An) has a (n + k) x (n + k) matrix in the B-spline basis:

An,k = «Mi,b Ni,k), -k ~ i, j~ n -1),

It is stochastic, for Li <Mi,b Ni,k> = <Mi,b eo) = 1, hence ).0= 1 and
Vo = (1, '''' 1) E IR n + k are associated eigenvalue and eigenvector, moreover
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I;.) :( 1 for j ~ 1. But An,k is also the matrix G = G L , given by de Boor in
[5] and [6], which is totally positive (all subdeterminants are non
negative). Since (Mi,k> Ni-I,k) and (Mi,k> N i+I,k) are strictly positive for
k ~ 1, Theorem 2 [12, p. 454] of Gantmakher and Krein implies that An.k
is an oscillatory matrix (i,e., some power of An,k is strictly totally positive:
all subdeterminants are positive). Therefore, its eigenvalues are real,
positive, and simple and the jth eigenvector Vi = (wiI' -k:( i:( n - 1) has
exactly j strict changes of sign,

(1 :( j :( n + k - 1),

The jth eigenfunction of Un,k is of course V,(x) = L7~ I k WilNi,k(X) (in par­
ticular Vo(x) = Li N/,k(.x) = 1) and, in view of the variation-diminishing
property of B-splines, we have S - (V) :( j for j ~ 1.

The operator Un,k being self-adjoint in L 2(/), its eigenfunctions Vj form
an orthogonal basis in Sp( k, L1 n ). The orthogonal projection off E L 2( I) on
this space is

n+k-I
S(x) = I y/f, V) V,(x),

i~ 0

where

fj 1 = (Vi' V) = I wuwmi(NI,k> Nm,k)
I,m

=' .. (XI+k+I-XI)(A V.. ) ='. ,(XI+k+I-XI) 2
1... WII k + 1 nk I I AI 1... k + 1 WII"

I I

Let J.1i,kU) = (f,Ni,k) =f6Ni,dt)f(t) dt (-k:(i:(n-l) be the
"moments" off W.r.t. the B-spline basis, then we have

(.r, V) = I wiI(f, N/,k) = I WilJ.li,Jf)·
i= -k i= --k

n-I n-l

Q.E.D.

Remark. From a practical point of view, once the numbers w il (i.e" the
components of the eigenvectors Vi of An,k) and the Yi have been computed,
the only work to do is to compute the moments J.li.df) and the linear com­
binations (f, Vj ) to get the projection S of f

(a) The approximate computation of J.1i,df) can be made using
special Gaussian quadrature rules for the weight functions Ni,dx) ~ 0 (see,
e.g., [21]).
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(b) The evaluation of S(x) can be made in the B-spline basis

S= LY/f, Vj> Vj=L (L WljY/f, V)) N i

/ J J

using the classical De Boor-Cox algorithm.

IV. PIECEWISE LINEAR AND QUADRATIC ORTHOGONAL SPLINES

4.1. Piecewise Linear Splines

Let V n.k = Vnand N'.k = Ni for k = 1. (hat-functions).

THEOREM 4. (i) The (n + 1) eigenvalues Aj") of Vn verify

(l ~}~n-l).

(ii) The (n + 1) orthogonal eigenfunctions Vj")(x) of V n have exactly}
real simple roots in (0, 1), moreover,

n

v&n)(x) = L N;(x) = 1,
i~O

n

v~n)(x) = L (-1 )iN,(x).
i~O

(iii) For the uniform partition LIn = {i/n, 0 ~ i ~ n}, we have

A)") = (2 + cos(jrr./n ))/3,

n

V)") = L cos(ijrr./n) Ni(x),
i~O

O~}~n

when n --+ +00, Vj") converges uniformly to cos(jrr.x), for every}??- 0 fixed.

Proof The matrix A n of V n is

2 1 0 .
a l 2 b l .•.....•..•••.••.

o a2 2 b2 .•......•••

............. a n ._ 1 2 bn - 1

............. 0 1 2



POSITIVE SPLINE OPERATORS 37

where ai=h;/(hi+ 1 +hJ, bi = l-ai, hi=Xi-Xi_ l • One verifies (i) by
Gershgorin's theorem on eigenvalues and direct computation and (ii) by
the fact that An is an oscillatory stochastic matrix (the principal minors are
positive). Since VYl = (wij' °~ i ~ n) has exactly j changes of sign
(Theorem 3), and since VYI is piecewise linear, it has also exatly j simple
roots in (0, 1).

When An is uniform, ai=bi=~ and the eigenvalues and eigenvectors of
An are known explicitly, which gives (iii). The uniform convergence of
Vi")( x) to Vi x) = cos(jnx) follows from the fact that Vi") is the piecewise
linear interpolant of V j at the points of An' I

EXAMPLE. For n = 3 and An = {i/n, °~ i ~ 3},

AO = 1,

A2 =~,

A3 =~,

V6" = (1, 1, 1, 1),
-T_ I IV 1 -(1,z, -z, -1),

-T I IV 2 = (1, -z' -z, 1),

V[ = (1, - 1, 1, - 1).

Let us compute successively (Theorem 3(iii)):

/OI=(VO' Vo>=l,

/i- 1 = (V2 , V2 >=~,

and the matrix C= (Cij)' where

fl 1 =(VI, V I>=-f2,

f3 1 =(V3, V3>=~

Cij = fj L WkiW kj = 1 +.if cos(in/3 ) cos(jn/3)
k

+ 4 cos(2in/3) cos(2jn/3) + 3 cos(in) cos(jn),

we get

[

26
-7

C=~ 2

-1

-7
14

-4
2

2
-4

14

-7

-~].
-7
26

Let Ili(f) = Jb Nlt)f(t) dt and

11 0 = H261lo - 7III + 2112 - 1l3)'

11 2 = ~(21l0 - 4111 + 14112 - 71l3),

11 1 = ~(-71l0 + 14111 - 4112 + 21l3),

11 3 = ~(-Ilo + 2111 -71l2 + 261l3)'



38 PAUL SABLONNIERE

Then, the orthogonal projection of f on Sp(1, Ll 3 ) is

3

S(x) = L rxiNi(x),
i~O

and it is easily verified that IISII 00 ~ 311fll.xc (which is also true for every
partition, see De Boor [7], Ciesielski [3]).

Remark. The above result (iii) can be extended to more general par­
titions. For rx> -1 and 1~ i ~ n - 1 define

2rx + i-I
a·=----

, 2(rx+i)
and

i + 1
b,= 1 -a'=2(rx+i)

In order that ai= hj(h i + hi+ d, we must take the partition LIn of I defined
by

for 2 ~ i ~ n.

Define the polynomials c~aJ(x) by the recurrence relation of ultraspherical
polynomials

xCla)(x) = ac(aJ (x) + bCla) (x)
n I n-l 1 n+l '

but with different initial conditions

(10)

and

From (10), we deduce the eigenvalues

A~') = (2 + xLn))/3,

and the eigenvectors

where {xn 0 ~ k ~ n} are the n + 1 roots in I of the equation

cIa) (x) = CIa) (x)n+ I n- J •
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Numerical experiments suggest that, for all k ~ 0, the piecewise linear
spline v~')(x), whose value at t;=h l + .. , +h; is C~')(Xkn)), converges
uniformly, when n --+ +00, to some special function vk(x). Magnus [15J
proved that, at least near x = 1, vk(x) has the behavior of F(j~Xli(3 :'1)
(a<~), where {j~,k~O} are the abscissae of the extrema of F(xl=
T(3/2 - a)(2/x)I/:-'J1/2_,(X). For a = 1, J 12(.\:) = ~(cos x/)x),
j~ = kn, and Vk(X) = cos(knx). For a = t j~ is a zero of J 1 and vk(x) =
Jo(j~ fi) (orthogonal system of Fourie-r-Bessel). I conjecture that Vi"I(X)
converges uniformly to vk(x) in the whole interval I.

4.2. Quadratic Splines on an Un!(orm Partition

The matrix An has rank n +2 and is given explicitly in [5]. For example,

72 42 6 0 0 0 0

21 60 37.5 1.5 0 0 0

2 25 66 26 1 0 0

As = I~O 0 1 26 66 26 \ 0

0 0 I 26 66 26 I

0 0 0 1.5 37.5 60 2\

0 0 0 0 6 42 72

This matrix is a perturbation of

66 52 2 0 0 0 0

26 67 26 I 0 0 0

I 26 66 26 I 0 0

At = l~O 0 I 26 66 26 \ O.

0 0 I 26 66 26 \

0 0 0 1 26 67 26

0 0 0 0 2 52 66

For 0 ~ k ~ n + 1, the eigenvalues of A,; are

J1in)=((x~'1)2+13x~')+ 16)/30, (II)

where .xt l = cos(kn/(n + 1)), and the associated eigenvectors are

(12)

where Tn(x) is the Chebyshev polynomial of degree n. (This is a
straightforward consequence of the recurrence relation 2xTn(x) =
Tn_1(x) + Tn+ I(X)). We can use (11) and (\2) as starting eigenvalues and
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eigenvectors for the inverse power method applied to All' Numerical
experiments show that the convergence is rather fast (about 15 iterations
for eight digits). Moreover, we have, when n -+ +00,

n2

),(11)< "(II),,, 1-----=
I 1"1 4(n+l)2

(n = 5: Al = 0.909679116 < J11 = 0.933611008).
The least eigenvalue A~1I11 is very near J1~1I11 = fs (e.g., n = 5,

A6 = 0.123328549 < J16 = 0.133 333 333, n = 8, )'9 = 0.126779075 < J19 =
0.133 333 333). Moreover the drawing of graphs suggest, as in the piecewise
linear case, the uniform convergence of villl(X) to Vk(X) = cos(knx) when
n -+ +00. Of course these conjecture have to be proved. Similar results are
observable for cubic orthogonal splines.

V. SOME EXTENSIONS OF THE RESULTS

5.1. It has been proved [23, Chap. 4] and [24]) that not only
S-(Vj)~j (see Theorem 3(ii» but that, even for k~2, Vj has exactly j
simple real roots in (0, 1) and that the roots of Vj + I lie between those of Vj

(like the roots of orthogonal polynomials).

5.2. When <j,g)=jbw(t)f(t)g(t)dt with a positive weight
function (essentially w( t) = t~( 1 - t)/I; lX, f3 > -1) the results of Theorems 1
and 2 are valid with minor modifications. The results of Theorem 3 would
be valid if one should be able to prove that the corresponding matrix AII,k

is yet an oscillatory matrix. The case w( t) = t'e -Ion [R + is also interesting.
These scalar products give rise to Jacobi and Laguerre splines.

5.3. In a similar way, Chebyshev B-splines [27] could be used to
define orthogonal generalized splines, but the main problem also concerns
the matrix A lI,k'

5.4. The extension to tensor-product orthogonal splines on
Q= I x I is straightforward, More generally, if Q is a triangulated domain
in [R2 and if there exists a basis of positive B-splines {Nj } forming a par­
tition of unity on Q, then it is possible to define the operator:

Uf(x) = L (fa M/t)f(t) dt) Nj(x)
I

and the corresponding orthogonal splines as eigenfunctions of this operator
if its matrix w.r.t. the basis {Nj } has good properties,
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