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We study some convergence (in LP) and spectral properties of the positive spline
operators Un.d(x) = Li (J6 Mi.k(t)f(t) dt) N,.dx), where Li Ni.k = 1 and HMi,k = I,
N i•k and M i•k being the B-splines of degree k and class Ck

- 1 associated with some
partition of 1= [0, I] into n subintervals. Their eigenfunctions are orthogonal
splines generalizing in some sense the Legendre polynomials with which they share
many properties. .1.) 1988 Academic Press. Inc.

I. INTRODUCTION

Let An= {O=XO<x I < ... <Xn= I} be an arbitrary partition of
sequence A n,k of knots by setting

... =Xn+k= 1 (n, k~ 1). The nodes of L1 n.k

1= [0, 1] extended to a
x_ k = ... =x- 1 =Xo and Xn=
are the points

(i,k=(Xi+1 + ... +Xi+k)/k ( - k ,,;;;, i ,,;;;, n - 1).

The normalized B-splines of degree k are defined by

where the B-spline M i k(X) is the (k + 1}th divided difference of the function
(k + 1)(·- x): with r~spect to Xi' ... , Xi+k+I'

It is well known that these B-splines verify

supp(Ni,d = [Xi' Xi+k+ IJ,
n- I

I Ni,Ax) = 1,
i= -k

n-l

L (i,kNi,k(X) = x,
i= -k

and ( Mi.k(X) dx = 1.
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Schoenberg [26] constructed a generalization of classical Bernstein
operators by setting, for f E C(I),

11 -- 1

S",kf(x) = L /(~i,k) Ni,k(X),
i= -k

(1)

Their properties have been studied in [17],
More recently, Muller [18] defined a second family of spline

operators, generalizing the Bernstein-Kantorovitch operators [14], by
setting, for f E U(I),

Here, we want to study a third family of posItive spline operators,
generalizing the modified Bernstein operators of Durrmeyer [11] and
Derriennic [8,9] which are defined, for f E LP(I), by

(3 )

where bi,k(X) = mxi(l- X)k i for °~ i ~ k,
A remarkable property of these operators is that their eigenfunctions are

the Legendre polynomials on [0, 1], This property is true, more generally,
for similar operators associated with the Jacobi and Laguerre polynomials
[4, 22], It seemed rather natural to extend this property to the following
spline operators

11-1

U",k/(X) = L <Mi,k' f) Nik(X),
i~- k

(4)

where <f, g) = Jb f(t) g(t) dt.
We give some convergence results when IA"I =maX;(.'it 1 -xJ tends to

zero as n-+ +00 andfELP(I) (l ~p~ +(0),
Then we prove that the eigenfunctions of (4) form a basis of orthogonal

splines on [0, 1], generalizing the Legendre polynomials, and different
from those given by Schoenberg [26], More precise results are given about
piecewise linear and quadratic orthogonal splines.

We use the notation Sp(k, A II) for the space of splines of degree k, class
Ck- 1

, on the partition A,,: its dimension is n+k and a basis is {Nik(X),
-k~i~n-1},
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II. CONVERGENCE PROPERTIES IN LP(l)

U/1,k is a positive, selradjoint operator of norm unity in

When f is integrable, S!l U/1k f( t) dt = SA f( t) dt.

U/1d(x) = HKn.k(x, t)f(t) dt, whereProof

THEOREM I. (i)
!f'(LP(I)).

(ii) For every k~l, U/1kfconverges tofEL"(l) when n-> +x and
1,1/11-> O.

(iii)

f1 -- I

K/1,k(X, t) = I Mi'k(t) Ni,k(X)
1~ k

= K/1,dt, x) ~ o.

The kernel being positive and symmetric, Un.k is a positive and self-adjoint
operator. ForfELP(J) and I/p+ I/q= I, we get by Holder's inequality

[f l JUq[fl JliP
IUnkf(x)1 ~ 0 Kn,k(X, t) dt 0 K/1,k(X, t) If(tW dt .

Since

f K/1,k(X, t) dt = I (f Mi,k(t) dt) Ni,k(X)
o i 0

= I Ni.k(X) = I = CK/1,k(X, t) dx.
i -0

Hence

fl IUn,kf(x)1 Pdx ~ fl fl K/1.k(X, t) If(tW dt dx
000

= fal (f K/1,d x ,t)dX) If(tWdt

= fl If(t)1 Pdt.
o

This proves IIU/1kfllp~ Ilfllp' But when f=e o (eo(x) = I for all x),
UnkeO = eo, thus in fact we have an equality and the norm of U/1k is I in the
space !f'(L"(l)) of linear continuous operators on LP(l), For the con-
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vergence in LP(l), we use a Korovkin-type theorem [1, lOJ which asserts
that for positive linear contractions, it is sufficient to prove it for the two
test functions eo(x) = 1, e](x) = x. But we have

and

I (k + 1 ) I<Mi,k> e 1 ) =f xMi,k(X) dx =L: x i+ j I(k + 2) (see, e.g., Neuman [16J).
o ;-0

This gives

Since IX i- ¢i.kl :::; (Ilk) 2:7- 1 IX i - Xi + il :::; ~(k + 1) ILl "I, we get at once; for
all k? 1,

In particular II U".kel - e11l p -> 0 when ILl "I -> O.

Finally

= <.1>0) =rf(t) dt. I
o

Q.E.D.

Let LP,l(l) be the space of functions f E LP(l) with l' E LP(I) and the

norm Il.fllp,1 = Ilfll p + 1I1'll p •

LEMMA 1. For each X E I,

"f Ni,k(X)' [+hl Mi,k(t) It - xl dt:::; (k + 1) ILl,,1
i= -k .'1: 1

holds.

Proof Let Ai.dx) = J~:+k+ I Mi,dt) It - xl dt and let us fix x E [Xi' x j + I J,
0:::; j:::; n - 1. The only nonzero B-splines at x have indices i = -k + j, ... , j,
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hence tE[X~k+j,Xk+j+l]' It-xl~(k+l)ILlnl and, using the properties
of B-splines

11-1

and L Ai,k(x)N;,k(x)~(k+l)ILI,J I
i~ -k

LEMMA 2, For !ELP,l(/), 1~p~ +00,

holds.

Proof For x fixed in I, we have

IUn.k!(x) - !(x)1 ~ ;~~lk Ni.k(X) ('+k+l Mi.k(t) (L 1f'(u)1 dU) dt

Let Ai.k(X) = J~;+k+l Mi.At)lt-xl dt and

Bi.k(X) = (,+k+ 1 Mi.k(t) (L 1f'(u)1 PdU) dt.

Holder's inequality (lIp + llq = 1) gives successively

L1f'(u)1 du ~ It - xI1jq (L 1f'(u)IP duYiP,

r+k

+
1

Mi.At) (L 1f'(u)1 dU) dt ~ A,l.~q(X) B},t(x),

IUn.k!(x) - !(x)1 ~ [~Ai.k(X) Ni,k(X)Jiq [~ B;,dx) Ni,JX)JiP.

Lemma 1 gives

ForXE[xi,Xi+k+l] and by Holder's inequality

f Bi.k(X) Ni.k(X) dx ~ [+k+ 1 Ni.k(x) ([+k+ 1 M;,k(t)

x ([+k+ 1 If'(u)j PdU) dt) dx

= [+k+ 1 Ni,Ax) ((U" 1 1f'(u)1 PdU) dx

~ ILlnl f+ktl 1f'(u)PI du,
<,

(5)

(6)

(7)
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since

f
Xi + k + 1 Xi+k+ 1 - Xi
. Ni,k(x)dx= k 1 ~ILI,J
~ +

Now, from (5), (6), and (7) we deduce

33

Q.E.D.

For f E U(I) and 0 ~ t ~ 1, the K-functional of Peetre [20] is defined by

(8)

and the integral modulus of continuity by

w1,p(f,h)= sup Ilf(·+t)-f(·)llp(I,),
O<,~h

where II ·11 (I,) means that the norm is to be taken over the interval
I, = [0,1- t]. Johnen [13] proved that there exist constants C1 > 0 and
C2 > 0, independent of f and p, such that:

(0 ~ t ~ 1) (9)

THEOREM 2. There exists a constant M k > 0 (independent of f and
1~ P ~ +C()) such thatJor all f E L P(I),

IIUn,kf - fllp~Mkwl,p(f, ILlnl)·

Proof From Theorem l(i), we have II Un,d - flip ~ 211fll p for all
f E LP(I) and from Lemma 2, we have

thus

II Un,kf - flip ~ II Un,k(f - g) - (f - g)llp+ II Un,k g- gllp

~211f -gllp+(k+ 1) Ilg'llplLlnl

~ 2( Ilf - gllp + k ILlnl II g'llp)'
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Taking the infimum over all gELP"(I) and usmg (8) and (9) with
t = k IAnl ~ 1, we get M k = 2kC2 ,

III. SPECTRAL PROPERTIES IN L 2(1)

THEOREM 3, (i) Un,k is a self-adjoint operator in L 2(1) having n + k real
positive simple eigenvalues ).j (0 ~ j ~ n + k - 1),

0< }.n + k __ , < , .. < ).j < ." < Al < ).0 = 1.

(ii) The associated eigenfunctions VJx) are defined by
Vi(x)=L7~!_kW'iNi,k(X)where Vi=(wlj' -k~i~n-l) is thejth eigen
vector of the oscillatory matrix A n,k = (<M',k' Ni,k)' - k ~ i, j ~ n ~ 1),
Moreover, VoCx) = 1 and S- (V) ~ j for 1~ j ~ n + k - 1 (number ol
changes of sign on I).

(iii) The best least square approximation S 0l.fEL2(1) in Sp(k, An) is

n+k-l

S(x) = L Yi(f, Vi) Vi(x)
i~ 0

where

and

n-I

(f, Vi )= L WI/Pucn,
i= --k

where

Proof Un,k is an operator of finite rank n + k and its restnctlOn to
Sp(k, An) has a (n + k) x (n + k) matrix in the B-spline basis:

An,k = «Mi,b Ni,k), -k ~ i, j~ n -1),

It is stochastic, for Li <Mi,b Ni,k> = <Mi,b eo) = 1, hence ).0= 1 and
Vo = (1, '''' 1) E IR n + k are associated eigenvalue and eigenvector, moreover
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I;.) :( 1 for j ~ 1. But An,k is also the matrix G = G L , given by de Boor in
[5] and [6], which is totally positive (all subdeterminants are non
negative). Since (Mi,k> Ni-I,k) and (Mi,k> N i+I,k) are strictly positive for
k ~ 1, Theorem 2 [12, p. 454] of Gantmakher and Krein implies that An.k
is an oscillatory matrix (i,e., some power of An,k is strictly totally positive:
all subdeterminants are positive). Therefore, its eigenvalues are real,
positive, and simple and the jth eigenvector Vi = (wiI' -k:( i:( n - 1) has
exactly j strict changes of sign,

(1 :( j :( n + k - 1),

The jth eigenfunction of Un,k is of course V,(x) = L7~ I k WilNi,k(X) (in par
ticular Vo(x) = Li N/,k(.x) = 1) and, in view of the variation-diminishing
property of B-splines, we have S - (V) :( j for j ~ 1.

The operator Un,k being self-adjoint in L 2(/), its eigenfunctions Vj form
an orthogonal basis in Sp( k, L1 n ). The orthogonal projection off E L 2( I) on
this space is

n+k-I
S(x) = I y/f, V) V,(x),

i~ 0

where

fj 1 = (Vi' V) = I wuwmi(NI,k> Nm,k)
I,m

=' .. (XI+k+I-XI)(A V.. ) ='. ,(XI+k+I-XI) 2
1... WII k + 1 nk I I AI 1... k + 1 WII"

I I

Let J.1i,kU) = (f,Ni,k) =f6Ni,dt)f(t) dt (-k:(i:(n-l) be the
"moments" off W.r.t. the B-spline basis, then we have

(.r, V) = I wiI(f, N/,k) = I WilJ.li,Jf)·
i= -k i= --k

n-I n-l

Q.E.D.

Remark. From a practical point of view, once the numbers w il (i.e" the
components of the eigenvectors Vi of An,k) and the Yi have been computed,
the only work to do is to compute the moments J.li.df) and the linear com
binations (f, Vj ) to get the projection S of f

(a) The approximate computation of J.1i,df) can be made using
special Gaussian quadrature rules for the weight functions Ni,dx) ~ 0 (see,
e.g., [21]).
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(b) The evaluation of S(x) can be made in the B-spline basis

S= LY/f, Vj> Vj=L (L WljY/f, V)) N i

/ J J

using the classical De Boor-Cox algorithm.

IV. PIECEWISE LINEAR AND QUADRATIC ORTHOGONAL SPLINES

4.1. Piecewise Linear Splines

Let V n.k = Vnand N'.k = Ni for k = 1. (hat-functions).

THEOREM 4. (i) The (n + 1) eigenvalues Aj") of Vn verify

(l ~}~n-l).

(ii) The (n + 1) orthogonal eigenfunctions Vj")(x) of V n have exactly}
real simple roots in (0, 1), moreover,

n

v&n)(x) = L N;(x) = 1,
i~O

n

v~n)(x) = L (-1 )iN,(x).
i~O

(iii) For the uniform partition LIn = {i/n, 0 ~ i ~ n}, we have

A)") = (2 + cos(jrr./n ))/3,

n

V)") = L cos(ijrr./n) Ni(x),
i~O

O~}~n

when n --+ +00, Vj") converges uniformly to cos(jrr.x), for every}??- 0 fixed.

Proof The matrix A n of V n is

2 1 0 .
a l 2 b l .•.....•..•••.••.

o a2 2 b2 .•......•••

............. a n ._ 1 2 bn - 1

............. 0 1 2
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where ai=h;/(hi+ 1 +hJ, bi = l-ai, hi=Xi-Xi_ l • One verifies (i) by
Gershgorin's theorem on eigenvalues and direct computation and (ii) by
the fact that An is an oscillatory stochastic matrix (the principal minors are
positive). Since VYl = (wij' °~ i ~ n) has exactly j changes of sign
(Theorem 3), and since VYI is piecewise linear, it has also exatly j simple
roots in (0, 1).

When An is uniform, ai=bi=~ and the eigenvalues and eigenvectors of
An are known explicitly, which gives (iii). The uniform convergence of
Vi")( x) to Vi x) = cos(jnx) follows from the fact that Vi") is the piecewise
linear interpolant of V j at the points of An' I

EXAMPLE. For n = 3 and An = {i/n, °~ i ~ 3},

AO = 1,

A2 =~,

A3 =~,

V6" = (1, 1, 1, 1),
-T_ I IV 1 -(1,z, -z, -1),

-T I IV 2 = (1, -z' -z, 1),

V[ = (1, - 1, 1, - 1).

Let us compute successively (Theorem 3(iii)):

/OI=(VO' Vo>=l,

/i- 1 = (V2 , V2 >=~,

and the matrix C= (Cij)' where

fl 1 =(VI, V I>=-f2,

f3 1 =(V3, V3>=~

Cij = fj L WkiW kj = 1 +.if cos(in/3 ) cos(jn/3)
k

+ 4 cos(2in/3) cos(2jn/3) + 3 cos(in) cos(jn),

we get

[

26
-7

C=~ 2

-1

-7
14

-4
2

2
-4

14

-7

-~].
-7
26

Let Ili(f) = Jb Nlt)f(t) dt and

11 0 = H261lo - 7III + 2112 - 1l3)'

11 2 = ~(21l0 - 4111 + 14112 - 71l3),

11 1 = ~(-71l0 + 14111 - 4112 + 21l3),

11 3 = ~(-Ilo + 2111 -71l2 + 261l3)'
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Then, the orthogonal projection of f on Sp(1, Ll 3 ) is

3

S(x) = L rxiNi(x),
i~O

and it is easily verified that IISII 00 ~ 311fll.xc (which is also true for every
partition, see De Boor [7], Ciesielski [3]).

Remark. The above result (iii) can be extended to more general par
titions. For rx> -1 and 1~ i ~ n - 1 define

2rx + i-I
a·=----

, 2(rx+i)
and

i + 1
b,= 1 -a'=2(rx+i)

In order that ai= hj(h i + hi+ d, we must take the partition LIn of I defined
by

for 2 ~ i ~ n.

Define the polynomials c~aJ(x) by the recurrence relation of ultraspherical
polynomials

xCla)(x) = ac(aJ (x) + bCla) (x)
n I n-l 1 n+l '

but with different initial conditions

(10)

and

From (10), we deduce the eigenvalues

A~') = (2 + xLn))/3,

and the eigenvectors

where {xn 0 ~ k ~ n} are the n + 1 roots in I of the equation

cIa) (x) = CIa) (x)n+ I n- J •
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Numerical experiments suggest that, for all k ~ 0, the piecewise linear
spline v~')(x), whose value at t;=h l + .. , +h; is C~')(Xkn)), converges
uniformly, when n --+ +00, to some special function vk(x). Magnus [15J
proved that, at least near x = 1, vk(x) has the behavior of F(j~Xli(3 :'1)
(a<~), where {j~,k~O} are the abscissae of the extrema of F(xl=
T(3/2 - a)(2/x)I/:-'J1/2_,(X). For a = 1, J 12(.\:) = ~(cos x/)x),
j~ = kn, and Vk(X) = cos(knx). For a = t j~ is a zero of J 1 and vk(x) =
Jo(j~ fi) (orthogonal system of Fourie-r-Bessel). I conjecture that Vi"I(X)
converges uniformly to vk(x) in the whole interval I.

4.2. Quadratic Splines on an Un!(orm Partition

The matrix An has rank n +2 and is given explicitly in [5]. For example,

72 42 6 0 0 0 0

21 60 37.5 1.5 0 0 0

2 25 66 26 1 0 0

As = I~O 0 1 26 66 26 \ 0

0 0 I 26 66 26 I

0 0 0 1.5 37.5 60 2\

0 0 0 0 6 42 72

This matrix is a perturbation of

66 52 2 0 0 0 0

26 67 26 I 0 0 0

I 26 66 26 I 0 0

At = l~O 0 I 26 66 26 \ O.

0 0 I 26 66 26 \

0 0 0 1 26 67 26

0 0 0 0 2 52 66

For 0 ~ k ~ n + 1, the eigenvalues of A,; are

J1in)=((x~'1)2+13x~')+ 16)/30, (II)

where .xt l = cos(kn/(n + 1)), and the associated eigenvectors are

(12)

where Tn(x) is the Chebyshev polynomial of degree n. (This is a
straightforward consequence of the recurrence relation 2xTn(x) =
Tn_1(x) + Tn+ I(X)). We can use (11) and (\2) as starting eigenvalues and
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eigenvectors for the inverse power method applied to All' Numerical
experiments show that the convergence is rather fast (about 15 iterations
for eight digits). Moreover, we have, when n -+ +00,

n2

),(11)< "(II),,, 1-----=
I 1"1 4(n+l)2

(n = 5: Al = 0.909679116 < J11 = 0.933611008).
The least eigenvalue A~1I11 is very near J1~1I11 = fs (e.g., n = 5,

A6 = 0.123328549 < J16 = 0.133 333 333, n = 8, )'9 = 0.126779075 < J19 =
0.133 333 333). Moreover the drawing of graphs suggest, as in the piecewise
linear case, the uniform convergence of villl(X) to Vk(X) = cos(knx) when
n -+ +00. Of course these conjecture have to be proved. Similar results are
observable for cubic orthogonal splines.

V. SOME EXTENSIONS OF THE RESULTS

5.1. It has been proved [23, Chap. 4] and [24]) that not only
S-(Vj)~j (see Theorem 3(ii» but that, even for k~2, Vj has exactly j
simple real roots in (0, 1) and that the roots of Vj + I lie between those of Vj

(like the roots of orthogonal polynomials).

5.2. When <j,g)=jbw(t)f(t)g(t)dt with a positive weight
function (essentially w( t) = t~( 1 - t)/I; lX, f3 > -1) the results of Theorems 1
and 2 are valid with minor modifications. The results of Theorem 3 would
be valid if one should be able to prove that the corresponding matrix AII,k

is yet an oscillatory matrix. The case w( t) = t'e -Ion [R + is also interesting.
These scalar products give rise to Jacobi and Laguerre splines.

5.3. In a similar way, Chebyshev B-splines [27] could be used to
define orthogonal generalized splines, but the main problem also concerns
the matrix A lI,k'

5.4. The extension to tensor-product orthogonal splines on
Q= I x I is straightforward, More generally, if Q is a triangulated domain
in [R2 and if there exists a basis of positive B-splines {Nj } forming a par
tition of unity on Q, then it is possible to define the operator:

Uf(x) = L (fa M/t)f(t) dt) Nj(x)
I

and the corresponding orthogonal splines as eigenfunctions of this operator
if its matrix w.r.t. the basis {Nj } has good properties,
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